On the connectivity and the conditional diameter of graphs and digraphs

نویسندگان

  • Camino Balbuena
  • Angeles Carmona
  • Josep Fàbrega
  • Miguel Angel Fiol
چکیده

Recently, it was proved that if the diameter D of a graph G is small enough in comparison with its girth, then G is maximally connected and that a similar result also holds for digraphs. More precisely, if the diameter D of a digraph G satisfies D 5 21 1, then G has maximum connectivity ( K = 6 ) . and if D 5 21, then it attains maximum edge-connectivity ( A = 6 ) , where I is a parameter which can be thought of as a generalization of the girth of a graph. In this paper, we study some similar conditions for a digraph to attain high connectivities, which are given in terms of what we call the conditional diameter or P-diameter of G. This parameter measures how far apart can be a pair of subdigraphs satisfying a given property P, and, hence, it generalizes the standard concept of diameter. As a corollary, some new sufficient conditions to attain maximum connectivity or edge-connectivity are derived. It is also shown that these conditions can be slightly relaxed when the digraphs are bipartite. The case of (undirected) graphs is managed as a corollary of the above results for digraphs. In particular, since I 2 1, some known results of Plesnik and Znhm are either reobtained or improved. For instance, it is shown that any graph whose line graph has diameter D = 2 (respectively, D

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs

Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree  and its in-degree . Now let D be a digraph with minimum degree  and edge-connectivity If  is real number, then the zeroth-order general Randic index is defined by   .  A digraph is maximally edge-connected if . In this paper we present sufficient condi...

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

0n removable cycles in graphs and digraphs

In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...

متن کامل

More skew-equienergetic digraphs

Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this  paper, we give some new methods to construct new skew-equienergetic digraphs.

متن کامل

On the Eccentric Connectivity Index of Unicyclic Graphs

In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Networks

دوره 28  شماره 

صفحات  -

تاریخ انتشار 1996